Introducción

Se resolverá la competición de Kaggle sobre manchas solares.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
# If not, !pip3 install tensorflow==2.2.0

# Does not work with Colab. Manually download Sunspots.csv and place it in /tmp
import os
os.system('kaggle datasets download -d robervalt/sunspots')

import numpy as np
import matplotlib.pyplot as plt
def plot_series(time, series, format="-", start=0, end=None):
    plt.plot(time[start:end], series[start:end], format)
    plt.xlabel("Time")
    plt.ylabel("Value")
    plt.grid(True)


import csv
time_step = []
sunspots = []


with open('/tmp/Sunspots.csv') as csvfile:
  reader = csv.reader(csvfile, delimiter=',')
  next(reader)
  for row in reader:
    sunspots.append(float(row[2]))
    time_step.append(int(row[0]))

series = np.array(sunspots)
time = np.array(time_step)
plt.figure(figsize=(10, 6))
plot_series(time, series)
2.3.0
series = np.array(sunspots)
time = np.array(time_step)
plt.figure(figsize=(10, 6))
plot_series(time, series)
split_time = 3000
time_train = time[:split_time]
x_train = series[:split_time]
time_valid = time[split_time:]
x_valid = series[split_time:]

window_size = 30
batch_size = 32
shuffle_buffer_size = 1000



def windowed_dataset(series, window_size, batch_size, shuffle_buffer):
    series = tf.expand_dims(series, axis=-1)
    ds = tf.data.Dataset.from_tensor_slices(series)
    ds = ds.window(window_size + 1, shift=1, drop_remainder=True)
    ds = ds.flat_map(lambda w: w.batch(window_size + 1))
    ds = ds.shuffle(shuffle_buffer)
    ds = ds.map(lambda w: (w[:-1], w[1:]))
    return ds.batch(batch_size).prefetch(1)

def model_forecast(model, series, window_size):
    ds = tf.data.Dataset.from_tensor_slices(series)
    ds = ds.window(window_size, shift=1, drop_remainder=True)
    ds = ds.flat_map(lambda w: w.batch(window_size))
    ds = ds.batch(32).prefetch(1)
    forecast = model.predict(ds)
    return forecast


tf.keras.backend.clear_session()
tf.random.set_seed(51)
np.random.seed(51)
window_size = 64
batch_size = 256
train_set = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size)
print(train_set)
print(x_train.shape)
<PrefetchDataset shapes: ((None, None, 1), (None, None, 1)), types: (tf.float64, tf.float64)>
(3000,)
model = tf.keras.models.Sequential([
  tf.keras.layers.Conv1D(filters=32, kernel_size=5,
                      strides=1, padding="causal",
                      activation="relu",
                      input_shape=[None, 1]),
  tf.keras.layers.LSTM(64, return_sequences=True),
  tf.keras.layers.LSTM(64, return_sequences=True),
  tf.keras.layers.Dense(30, activation="relu"),
  tf.keras.layers.Dense(10, activation="relu"),
  tf.keras.layers.Dense(1),
  tf.keras.layers.Lambda(lambda x: x * 400)
])

lr_schedule = tf.keras.callbacks.LearningRateScheduler(
    lambda epoch: 1e-8 * 10**(epoch / 20))
optimizer = tf.keras.optimizers.SGD(lr=1e-8, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(),
              optimizer=optimizer,
              metrics=["mae"])
history = model.fit(train_set, epochs=100, callbacks=[lr_schedule])
Epoch 1/100
12/12 [==============================] - 0s 22ms/step - loss: 79.8340 - mae: 80.3314
Epoch 2/100
12/12 [==============================] - 0s 25ms/step - loss: 78.0944 - mae: 78.5918
Epoch 3/100
12/12 [==============================] - 0s 26ms/step - loss: 75.4519 - mae: 75.9497
Epoch 4/100
12/12 [==============================] - 0s 25ms/step - loss: 72.2679 - mae: 72.7658
Epoch 5/100
12/12 [==============================] - 0s 25ms/step - loss: 68.7693 - mae: 69.2672
Epoch 6/100
12/12 [==============================] - 0s 30ms/step - loss: 65.1128 - mae: 65.6099
Epoch 7/100
12/12 [==============================] - 0s 27ms/step - loss: 61.5272 - mae: 62.0241
Epoch 8/100
12/12 [==============================] - 0s 27ms/step - loss: 58.1406 - mae: 58.6369
Epoch 9/100
12/12 [==============================] - 0s 29ms/step - loss: 55.0732 - mae: 55.5697
Epoch 10/100
12/12 [==============================] - 0s 35ms/step - loss: 52.3436 - mae: 52.8400
Epoch 11/100
12/12 [==============================] - 0s 25ms/step - loss: 49.9148 - mae: 50.4113
Epoch 12/100
12/12 [==============================] - 0s 28ms/step - loss: 47.8592 - mae: 48.3560
Epoch 13/100
12/12 [==============================] - 0s 27ms/step - loss: 46.0553 - mae: 46.5517
Epoch 14/100
12/12 [==============================] - 0s 27ms/step - loss: 44.5444 - mae: 45.0406
Epoch 15/100
12/12 [==============================] - 0s 26ms/step - loss: 43.3078 - mae: 43.8045
Epoch 16/100
12/12 [==============================] - 0s 27ms/step - loss: 42.2855 - mae: 42.7826
Epoch 17/100
12/12 [==============================] - 0s 29ms/step - loss: 41.3797 - mae: 41.8767
Epoch 18/100
12/12 [==============================] - 0s 37ms/step - loss: 40.5481 - mae: 41.0453
Epoch 19/100
12/12 [==============================] - 0s 25ms/step - loss: 39.7690 - mae: 40.2659
Epoch 20/100
12/12 [==============================] - 0s 27ms/step - loss: 39.0213 - mae: 39.5181
Epoch 21/100
12/12 [==============================] - 0s 26ms/step - loss: 38.2735 - mae: 38.7699
Epoch 22/100
12/12 [==============================] - 0s 26ms/step - loss: 37.4213 - mae: 37.9177
Epoch 23/100
12/12 [==============================] - 0s 25ms/step - loss: 36.3873 - mae: 36.8839
Epoch 24/100
12/12 [==============================] - 0s 26ms/step - loss: 35.3029 - mae: 35.7992
Epoch 25/100
12/12 [==============================] - 0s 26ms/step - loss: 34.0842 - mae: 34.5800
Epoch 26/100
12/12 [==============================] - 0s 36ms/step - loss: 32.9492 - mae: 33.4449
Epoch 27/100
12/12 [==============================] - 0s 30ms/step - loss: 31.8640 - mae: 32.3595
Epoch 28/100
12/12 [==============================] - 0s 36ms/step - loss: 31.1214 - mae: 31.6171
Epoch 29/100
12/12 [==============================] - 0s 26ms/step - loss: 30.3468 - mae: 30.8424
Epoch 30/100
12/12 [==============================] - 0s 26ms/step - loss: 29.6211 - mae: 30.1165
Epoch 31/100
12/12 [==============================] - 0s 26ms/step - loss: 29.0370 - mae: 29.5323
Epoch 32/100
12/12 [==============================] - 0s 31ms/step - loss: 28.5865 - mae: 29.0818
Epoch 33/100
12/12 [==============================] - 0s 26ms/step - loss: 28.1712 - mae: 28.6663
Epoch 34/100
12/12 [==============================] - 0s 35ms/step - loss: 27.9727 - mae: 28.4673
Epoch 35/100
12/12 [==============================] - 0s 33ms/step - loss: 27.7913 - mae: 28.2859
Epoch 36/100
12/12 [==============================] - 0s 34ms/step - loss: 27.3850 - mae: 27.8797
Epoch 37/100
12/12 [==============================] - 0s 25ms/step - loss: 26.9803 - mae: 27.4748
Epoch 38/100
12/12 [==============================] - 0s 26ms/step - loss: 26.7822 - mae: 27.2767
Epoch 39/100
12/12 [==============================] - 0s 35ms/step - loss: 26.2987 - mae: 26.7932
Epoch 40/100
12/12 [==============================] - 0s 35ms/step - loss: 25.7735 - mae: 26.2680
Epoch 41/100
12/12 [==============================] - 0s 26ms/step - loss: 25.4864 - mae: 25.9808
Epoch 42/100
12/12 [==============================] - 0s 27ms/step - loss: 25.1964 - mae: 25.6908
Epoch 43/100
12/12 [==============================] - 0s 25ms/step - loss: 24.8792 - mae: 25.3733
Epoch 44/100
12/12 [==============================] - 0s 26ms/step - loss: 24.2325 - mae: 24.7270
Epoch 45/100
12/12 [==============================] - 0s 25ms/step - loss: 23.8610 - mae: 24.3553
Epoch 46/100
12/12 [==============================] - 0s 30ms/step - loss: 23.8753 - mae: 24.3694
Epoch 47/100
12/12 [==============================] - 0s 29ms/step - loss: 23.2602 - mae: 23.7541
Epoch 48/100
12/12 [==============================] - 0s 24ms/step - loss: 22.8506 - mae: 23.3443
Epoch 49/100
12/12 [==============================] - 0s 25ms/step - loss: 22.4956 - mae: 22.9894
Epoch 50/100
12/12 [==============================] - 0s 26ms/step - loss: 22.0830 - mae: 22.5768
Epoch 51/100
12/12 [==============================] - 0s 31ms/step - loss: 22.2996 - mae: 22.7936
Epoch 52/100
12/12 [==============================] - 0s 25ms/step - loss: 22.0087 - mae: 22.5026
Epoch 53/100
12/12 [==============================] - 0s 36ms/step - loss: 22.0203 - mae: 22.5139
Epoch 54/100
12/12 [==============================] - 0s 33ms/step - loss: 21.2748 - mae: 21.7688
Epoch 55/100
12/12 [==============================] - 0s 35ms/step - loss: 21.1535 - mae: 21.6472
Epoch 56/100
12/12 [==============================] - 0s 34ms/step - loss: 20.5946 - mae: 21.0881
Epoch 57/100
12/12 [==============================] - 0s 35ms/step - loss: 20.8638 - mae: 21.3574
Epoch 58/100
12/12 [==============================] - 0s 38ms/step - loss: 20.6624 - mae: 21.1558
Epoch 59/100
12/12 [==============================] - 0s 33ms/step - loss: 20.4109 - mae: 20.9043
Epoch 60/100
12/12 [==============================] - 0s 31ms/step - loss: 20.0422 - mae: 20.5353
Epoch 61/100
12/12 [==============================] - 0s 31ms/step - loss: 19.9312 - mae: 20.4242
Epoch 62/100
12/12 [==============================] - 0s 37ms/step - loss: 20.7496 - mae: 21.2431
Epoch 63/100
12/12 [==============================] - 0s 26ms/step - loss: 19.8060 - mae: 20.2991
Epoch 64/100
12/12 [==============================] - 0s 25ms/step - loss: 20.7451 - mae: 21.2383
Epoch 65/100
12/12 [==============================] - 0s 26ms/step - loss: 19.6167 - mae: 20.1099
Epoch 66/100
12/12 [==============================] - 0s 35ms/step - loss: 20.5485 - mae: 21.0418
Epoch 67/100
12/12 [==============================] - 0s 29ms/step - loss: 22.2171 - mae: 22.7108
Epoch 68/100
12/12 [==============================] - 0s 25ms/step - loss: 19.4993 - mae: 19.9921
Epoch 69/100
12/12 [==============================] - 0s 27ms/step - loss: 22.1643 - mae: 22.6578
Epoch 70/100
12/12 [==============================] - 0s 25ms/step - loss: 21.3564 - mae: 21.8497
Epoch 71/100
12/12 [==============================] - 0s 28ms/step - loss: 20.4340 - mae: 20.9270
Epoch 72/100
12/12 [==============================] - 0s 35ms/step - loss: 21.4140 - mae: 21.9070
Epoch 73/100
12/12 [==============================] - 0s 29ms/step - loss: 20.9080 - mae: 21.4009
Epoch 74/100
12/12 [==============================] - 0s 25ms/step - loss: 21.9128 - mae: 22.4061
Epoch 75/100
12/12 [==============================] - 0s 27ms/step - loss: 19.8545 - mae: 20.3472
Epoch 76/100
12/12 [==============================] - 0s 35ms/step - loss: 23.4880 - mae: 23.9823
Epoch 77/100
12/12 [==============================] - 0s 31ms/step - loss: 21.4208 - mae: 21.9141
Epoch 78/100
12/12 [==============================] - 0s 26ms/step - loss: 21.8130 - mae: 22.3065
Epoch 79/100
12/12 [==============================] - 0s 28ms/step - loss: 22.6996 - mae: 23.1936
Epoch 80/100
12/12 [==============================] - 0s 26ms/step - loss: 23.4137 - mae: 23.9077
Epoch 81/100
12/12 [==============================] - 0s 26ms/step - loss: 36.0214 - mae: 36.5176
Epoch 82/100
12/12 [==============================] - 0s 26ms/step - loss: 37.9856 - mae: 38.4822
Epoch 83/100
12/12 [==============================] - 0s 26ms/step - loss: 46.1187 - mae: 46.6162
Epoch 84/100
12/12 [==============================] - 0s 28ms/step - loss: 36.3539 - mae: 36.8504
Epoch 85/100
12/12 [==============================] - 0s 27ms/step - loss: 38.0205 - mae: 38.5174
Epoch 86/100
12/12 [==============================] - 0s 35ms/step - loss: 34.9671 - mae: 35.4639
Epoch 87/100
12/12 [==============================] - 0s 26ms/step - loss: 35.3582 - mae: 35.8547
Epoch 88/100
12/12 [==============================] - 0s 34ms/step - loss: 36.7537 - mae: 37.2507
Epoch 89/100
12/12 [==============================] - 0s 31ms/step - loss: 33.7122 - mae: 34.2083
Epoch 90/100
12/12 [==============================] - 0s 26ms/step - loss: 60.4209 - mae: 60.9192
Epoch 91/100
12/12 [==============================] - 0s 26ms/step - loss: 52.6610 - mae: 53.1589
Epoch 92/100
12/12 [==============================] - 0s 25ms/step - loss: 49.7735 - mae: 50.2717
Epoch 93/100
12/12 [==============================] - 0s 25ms/step - loss: 54.1865 - mae: 54.6842
Epoch 94/100
12/12 [==============================] - 0s 26ms/step - loss: 58.2520 - mae: 58.7497
Epoch 95/100
12/12 [==============================] - 0s 25ms/step - loss: 56.2516 - mae: 56.7495
Epoch 96/100
12/12 [==============================] - 0s 26ms/step - loss: 50.3765 - mae: 50.8749
Epoch 97/100
12/12 [==============================] - 0s 30ms/step - loss: 60.5635 - mae: 61.0616
Epoch 98/100
12/12 [==============================] - 0s 27ms/step - loss: 56.9803 - mae: 57.4789
Epoch 99/100
12/12 [==============================] - 0s 26ms/step - loss: 55.6900 - mae: 56.1883
Epoch 100/100
12/12 [==============================] - 0s 33ms/step - loss: 55.0430 - mae: 55.5413
plt.semilogx(history.history["lr"], history.history["loss"])
plt.axis([1e-8, 1e-4, 0, 60])
(1e-08, 0.0001, 0.0, 60.0)
tf.keras.backend.clear_session()
tf.random.set_seed(51)
np.random.seed(51)
train_set = windowed_dataset(x_train, window_size=60, batch_size=100, shuffle_buffer=shuffle_buffer_size)
model = tf.keras.models.Sequential([
  tf.keras.layers.Conv1D(filters=60, kernel_size=5,
                      strides=1, padding="causal",
                      activation="relu",
                      input_shape=[None, 1]),
  tf.keras.layers.LSTM(60, return_sequences=True),
  tf.keras.layers.LSTM(60, return_sequences=True),
  tf.keras.layers.Dense(30, activation="relu"),
  tf.keras.layers.Dense(10, activation="relu"),
  tf.keras.layers.Dense(1),
  tf.keras.layers.Lambda(lambda x: x * 400)
])


optimizer = tf.keras.optimizers.SGD(lr=1e-5, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(),
              optimizer=optimizer,
              metrics=["mae"])
history = model.fit(train_set,epochs=500)






rnn_forecast = model_forecast(model, series[..., np.newaxis], window_size)
rnn_forecast = rnn_forecast[split_time - window_size:-1, -1, 0]

plt.figure(figsize=(10, 6))
plot_series(time_valid, x_valid)
plot_series(time_valid, rnn_forecast)


tf.keras.metrics.mean_absolute_error(x_valid, rnn_forecast).numpy()


import matplotlib.image  as mpimg
import matplotlib.pyplot as plt

#-----------------------------------------------------------
# Retrieve a list of list results on training and test data
# sets for each training epoch
#-----------------------------------------------------------
loss=history.history['loss']

epochs=range(len(loss)) # Get number of epochs


#------------------------------------------------
# Plot training and validation loss per epoch
#------------------------------------------------
plt.plot(epochs, loss, 'r')
plt.title('Training loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(["Loss"])

plt.figure()



zoomed_loss = loss[200:]
zoomed_epochs = range(200,500)


#------------------------------------------------
# Plot training and validation loss per epoch
#------------------------------------------------
plt.plot(zoomed_epochs, zoomed_loss, 'r')
plt.title('Training loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(["Loss"])

plt.figure()
Epoch 1/500
30/30 [==============================] - 0s 14ms/step - loss: 38.9198 - mae: 39.4161
Epoch 2/500
30/30 [==============================] - 0s 14ms/step - loss: 25.7735 - mae: 26.2680
Epoch 3/500
30/30 [==============================] - 0s 13ms/step - loss: 22.0767 - mae: 22.5705
Epoch 4/500
30/30 [==============================] - 0s 14ms/step - loss: 20.4675 - mae: 20.9605
Epoch 5/500
30/30 [==============================] - 0s 15ms/step - loss: 19.7721 - mae: 20.2645
Epoch 6/500
30/30 [==============================] - 0s 14ms/step - loss: 19.3017 - mae: 19.7939
Epoch 7/500
30/30 [==============================] - 0s 15ms/step - loss: 18.7228 - mae: 19.2149
Epoch 8/500
30/30 [==============================] - 0s 14ms/step - loss: 18.1242 - mae: 18.6159
Epoch 9/500
30/30 [==============================] - 0s 14ms/step - loss: 18.0721 - mae: 18.5636
Epoch 10/500
30/30 [==============================] - 0s 14ms/step - loss: 18.1061 - mae: 18.5977
Epoch 11/500
30/30 [==============================] - 1s 17ms/step - loss: 17.8688 - mae: 18.3600
Epoch 12/500
30/30 [==============================] - 0s 16ms/step - loss: 17.9055 - mae: 18.3960
Epoch 13/500
30/30 [==============================] - 0s 14ms/step - loss: 17.8534 - mae: 18.3441
Epoch 14/500
30/30 [==============================] - 0s 14ms/step - loss: 17.7943 - mae: 18.2851
Epoch 15/500
30/30 [==============================] - 0s 14ms/step - loss: 17.5729 - mae: 18.0639
Epoch 16/500
30/30 [==============================] - 0s 15ms/step - loss: 17.5833 - mae: 18.0738
Epoch 17/500
30/30 [==============================] - 0s 14ms/step - loss: 17.5072 - mae: 17.9979
Epoch 18/500
30/30 [==============================] - 0s 14ms/step - loss: 17.3512 - mae: 17.8416
Epoch 19/500
30/30 [==============================] - 0s 14ms/step - loss: 17.6318 - mae: 18.1227
Epoch 20/500
30/30 [==============================] - 0s 14ms/step - loss: 17.3520 - mae: 17.8426
Epoch 21/500
30/30 [==============================] - 0s 14ms/step - loss: 17.6473 - mae: 18.1381
Epoch 22/500
30/30 [==============================] - 1s 17ms/step - loss: 17.3582 - mae: 17.8488
Epoch 23/500
30/30 [==============================] - 0s 16ms/step - loss: 17.1359 - mae: 17.6265
Epoch 24/500
30/30 [==============================] - 1s 17ms/step - loss: 17.2582 - mae: 17.7486
Epoch 25/500
30/30 [==============================] - 0s 15ms/step - loss: 17.1194 - mae: 17.6098
Epoch 26/500
30/30 [==============================] - 0s 14ms/step - loss: 17.2270 - mae: 17.7175
Epoch 27/500
30/30 [==============================] - 0s 14ms/step - loss: 17.0160 - mae: 17.5065
Epoch 28/500
30/30 [==============================] - 0s 14ms/step - loss: 17.3924 - mae: 17.8832
Epoch 29/500
30/30 [==============================] - 0s 14ms/step - loss: 17.1180 - mae: 17.6085
Epoch 30/500
30/30 [==============================] - 0s 14ms/step - loss: 16.9777 - mae: 17.4680
Epoch 31/500
30/30 [==============================] - 0s 14ms/step - loss: 16.9133 - mae: 17.4035
Epoch 32/500
30/30 [==============================] - 0s 14ms/step - loss: 17.0628 - mae: 17.5530
Epoch 33/500
30/30 [==============================] - 0s 14ms/step - loss: 17.1168 - mae: 17.6070
Epoch 34/500
30/30 [==============================] - 0s 14ms/step - loss: 16.9634 - mae: 17.4536
Epoch 35/500
30/30 [==============================] - 0s 14ms/step - loss: 17.0348 - mae: 17.5251
Epoch 36/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8702 - mae: 17.3601
Epoch 37/500
30/30 [==============================] - 0s 16ms/step - loss: 17.1608 - mae: 17.6511
Epoch 38/500
30/30 [==============================] - 1s 17ms/step - loss: 17.1744 - mae: 17.6645
Epoch 39/500
30/30 [==============================] - 0s 15ms/step - loss: 17.0314 - mae: 17.5214
Epoch 40/500
30/30 [==============================] - 0s 14ms/step - loss: 16.9324 - mae: 17.4222
Epoch 41/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8663 - mae: 17.3561
Epoch 42/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8897 - mae: 17.3795
Epoch 43/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8672 - mae: 17.3569
Epoch 44/500
30/30 [==============================] - 0s 16ms/step - loss: 17.2954 - mae: 17.7853
Epoch 45/500
30/30 [==============================] - 0s 14ms/step - loss: 16.7839 - mae: 17.2739
Epoch 46/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8649 - mae: 17.3543
Epoch 47/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8154 - mae: 17.3053
Epoch 48/500
30/30 [==============================] - 0s 14ms/step - loss: 16.8541 - mae: 17.3438
Epoch 49/500
30/30 [==============================] - 0s 15ms/step - loss: 16.9587 - mae: 17.4486
Epoch 50/500
30/30 [==============================] - 1s 19ms/step - loss: 16.7717 - mae: 17.2614
Epoch 51/500
30/30 [==============================] - 0s 15ms/step - loss: 16.7268 - mae: 17.2164
Epoch 52/500
30/30 [==============================] - 0s 14ms/step - loss: 16.9362 - mae: 17.4257
Epoch 53/500
30/30 [==============================] - 0s 14ms/step - loss: 16.7150 - mae: 17.2048
Epoch 54/500
30/30 [==============================] - 0s 14ms/step - loss: 16.7991 - mae: 17.2883
Epoch 55/500
30/30 [==============================] - 0s 15ms/step - loss: 16.7678 - mae: 17.2573
Epoch 56/500
30/30 [==============================] - 0s 14ms/step - loss: 16.6731 - mae: 17.1628
Epoch 57/500
30/30 [==============================] - 0s 15ms/step - loss: 16.6024 - mae: 17.0919
Epoch 58/500
30/30 [==============================] - 0s 15ms/step - loss: 16.5811 - mae: 17.0704
Epoch 59/500
30/30 [==============================] - 0s 17ms/step - loss: 16.7307 - mae: 17.2201
Epoch 60/500
30/30 [==============================] - 0s 14ms/step - loss: 16.7199 - mae: 17.2093
Epoch 61/500
30/30 [==============================] - 0s 16ms/step - loss: 16.6808 - mae: 17.1704
Epoch 62/500
30/30 [==============================] - 1s 17ms/step - loss: 16.6156 - mae: 17.1049
Epoch 63/500
30/30 [==============================] - 0s 16ms/step - loss: 16.6709 - mae: 17.1601
Epoch 64/500
30/30 [==============================] - 1s 17ms/step - loss: 16.5756 - mae: 17.0649
Epoch 65/500
30/30 [==============================] - 0s 14ms/step - loss: 16.5314 - mae: 17.0202
Epoch 66/500
30/30 [==============================] - 0s 14ms/step - loss: 16.5359 - mae: 17.0251
Epoch 67/500
30/30 [==============================] - 0s 15ms/step - loss: 16.5913 - mae: 17.0804
Epoch 68/500
30/30 [==============================] - 0s 15ms/step - loss: 16.6478 - mae: 17.1372
Epoch 69/500
30/30 [==============================] - 0s 14ms/step - loss: 16.5077 - mae: 16.9968
Epoch 70/500
30/30 [==============================] - 0s 14ms/step - loss: 16.6393 - mae: 17.1285
Epoch 71/500
30/30 [==============================] - 0s 14ms/step - loss: 16.5727 - mae: 17.0621
Epoch 72/500
30/30 [==============================] - 0s 16ms/step - loss: 16.4809 - mae: 16.9702
Epoch 73/500
30/30 [==============================] - 0s 16ms/step - loss: 16.5381 - mae: 17.0273
Epoch 74/500
30/30 [==============================] - 0s 14ms/step - loss: 16.6619 - mae: 17.1511
Epoch 75/500
30/30 [==============================] - 0s 16ms/step - loss: 16.4973 - mae: 16.9863
Epoch 76/500
30/30 [==============================] - 0s 15ms/step - loss: 16.4755 - mae: 16.9643
Epoch 77/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4491 - mae: 16.9380
Epoch 78/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4661 - mae: 16.9550
Epoch 79/500
30/30 [==============================] - 0s 15ms/step - loss: 16.4554 - mae: 16.9441
Epoch 80/500
30/30 [==============================] - 0s 14ms/step - loss: 16.6619 - mae: 17.1510
Epoch 81/500
30/30 [==============================] - 1s 17ms/step - loss: 16.4701 - mae: 16.9590
Epoch 82/500
30/30 [==============================] - 1s 17ms/step - loss: 16.4889 - mae: 16.9778
Epoch 83/500
30/30 [==============================] - 1s 17ms/step - loss: 16.3861 - mae: 16.8747
Epoch 84/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4110 - mae: 16.8994
Epoch 85/500
30/30 [==============================] - 0s 15ms/step - loss: 16.4080 - mae: 16.8968
Epoch 86/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4727 - mae: 16.9617
Epoch 87/500
30/30 [==============================] - 0s 17ms/step - loss: 16.7928 - mae: 17.2820
Epoch 88/500
30/30 [==============================] - 0s 16ms/step - loss: 16.4995 - mae: 16.9887
Epoch 89/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3739 - mae: 16.8624
Epoch 90/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4305 - mae: 16.9193
Epoch 91/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4828 - mae: 16.9718
Epoch 92/500
30/30 [==============================] - 0s 15ms/step - loss: 16.4846 - mae: 16.9732
Epoch 93/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4738 - mae: 16.9629
Epoch 94/500
30/30 [==============================] - 0s 16ms/step - loss: 16.6700 - mae: 17.1590
Epoch 95/500
30/30 [==============================] - 0s 17ms/step - loss: 16.5721 - mae: 17.0614
Epoch 96/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3160 - mae: 16.8046
Epoch 97/500
30/30 [==============================] - 0s 16ms/step - loss: 16.3488 - mae: 16.8376
Epoch 98/500
30/30 [==============================] - 1s 17ms/step - loss: 16.5817 - mae: 17.0709
Epoch 99/500
30/30 [==============================] - 1s 18ms/step - loss: 16.3842 - mae: 16.8730
Epoch 100/500
30/30 [==============================] - 0s 16ms/step - loss: 16.3685 - mae: 16.8573
Epoch 101/500
30/30 [==============================] - 1s 18ms/step - loss: 16.3120 - mae: 16.8007
Epoch 102/500
30/30 [==============================] - 0s 15ms/step - loss: 16.6005 - mae: 17.0894
Epoch 103/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2952 - mae: 16.7837
Epoch 104/500
30/30 [==============================] - 0s 15ms/step - loss: 16.4471 - mae: 16.9363
Epoch 105/500
30/30 [==============================] - 0s 15ms/step - loss: 16.3051 - mae: 16.7936
Epoch 106/500
30/30 [==============================] - 0s 13ms/step - loss: 16.2802 - mae: 16.7686
Epoch 107/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2607 - mae: 16.7493
Epoch 108/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2879 - mae: 16.7763
Epoch 109/500
30/30 [==============================] - 0s 14ms/step - loss: 16.4059 - mae: 16.8947
Epoch 110/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3604 - mae: 16.8490
Epoch 111/500
30/30 [==============================] - 0s 15ms/step - loss: 16.2226 - mae: 16.7111
Epoch 112/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2326 - mae: 16.7211
Epoch 113/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3609 - mae: 16.8502
Epoch 114/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2546 - mae: 16.7434
Epoch 115/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2950 - mae: 16.7835
Epoch 116/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3529 - mae: 16.8417
Epoch 117/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2277 - mae: 16.7164
Epoch 118/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2188 - mae: 16.7074
Epoch 119/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1949 - mae: 16.6836
Epoch 120/500
30/30 [==============================] - 0s 15ms/step - loss: 16.2557 - mae: 16.7442
Epoch 121/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2540 - mae: 16.7428
Epoch 122/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1959 - mae: 16.6844
Epoch 123/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2733 - mae: 16.7620
Epoch 124/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2494 - mae: 16.7381
Epoch 125/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2215 - mae: 16.7106
Epoch 126/500
30/30 [==============================] - 0s 15ms/step - loss: 16.1868 - mae: 16.6756
Epoch 127/500
30/30 [==============================] - 0s 15ms/step - loss: 16.2651 - mae: 16.7540
Epoch 128/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2318 - mae: 16.7204
Epoch 129/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2032 - mae: 16.6919
Epoch 130/500
30/30 [==============================] - 0s 16ms/step - loss: 16.1210 - mae: 16.6095
Epoch 131/500
30/30 [==============================] - 1s 17ms/step - loss: 16.1581 - mae: 16.6466
Epoch 132/500
30/30 [==============================] - 0s 15ms/step - loss: 16.1799 - mae: 16.6685
Epoch 133/500
30/30 [==============================] - 1s 17ms/step - loss: 16.1099 - mae: 16.5982
Epoch 134/500
30/30 [==============================] - 0s 15ms/step - loss: 16.1523 - mae: 16.6412
Epoch 135/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2892 - mae: 16.7783
Epoch 136/500
30/30 [==============================] - 1s 18ms/step - loss: 16.1824 - mae: 16.6713
Epoch 137/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2042 - mae: 16.6929
Epoch 138/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1300 - mae: 16.6188
Epoch 139/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0768 - mae: 16.5655
Epoch 140/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0720 - mae: 16.5608
Epoch 141/500
30/30 [==============================] - 0s 15ms/step - loss: 16.0639 - mae: 16.5527
Epoch 142/500
30/30 [==============================] - 0s 14ms/step - loss: 16.2686 - mae: 16.7576
Epoch 143/500
30/30 [==============================] - 0s 15ms/step - loss: 16.5888 - mae: 17.0781
Epoch 144/500
30/30 [==============================] - 0s 16ms/step - loss: 16.1501 - mae: 16.6389
Epoch 145/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0998 - mae: 16.5884
Epoch 146/500
30/30 [==============================] - 0s 13ms/step - loss: 16.0652 - mae: 16.5535
Epoch 147/500
30/30 [==============================] - 0s 16ms/step - loss: 16.0644 - mae: 16.5532
Epoch 148/500
30/30 [==============================] - 1s 18ms/step - loss: 16.0389 - mae: 16.5276
Epoch 149/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1162 - mae: 16.6048
Epoch 150/500
30/30 [==============================] - 0s 16ms/step - loss: 16.0238 - mae: 16.5122
Epoch 151/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3710 - mae: 16.8603
Epoch 152/500
30/30 [==============================] - 0s 15ms/step - loss: 16.2191 - mae: 16.7078
Epoch 153/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9968 - mae: 16.4854
Epoch 154/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0367 - mae: 16.5250
Epoch 155/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9479 - mae: 16.4360
Epoch 156/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1149 - mae: 16.6034
Epoch 157/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0225 - mae: 16.5109
Epoch 158/500
30/30 [==============================] - 1s 17ms/step - loss: 15.9680 - mae: 16.4562
Epoch 159/500
30/30 [==============================] - 0s 17ms/step - loss: 16.4934 - mae: 16.9826
Epoch 160/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9927 - mae: 16.4808
Epoch 161/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9507 - mae: 16.4391
Epoch 162/500
30/30 [==============================] - 1s 17ms/step - loss: 16.0650 - mae: 16.5536
Epoch 163/500
30/30 [==============================] - 0s 16ms/step - loss: 16.0183 - mae: 16.5065
Epoch 164/500
30/30 [==============================] - 0s 16ms/step - loss: 15.9695 - mae: 16.4579
Epoch 165/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0168 - mae: 16.5052
Epoch 166/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9412 - mae: 16.4294
Epoch 167/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0221 - mae: 16.5106
Epoch 168/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0135 - mae: 16.5020
Epoch 169/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8922 - mae: 16.3804
Epoch 170/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9840 - mae: 16.4722
Epoch 171/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9054 - mae: 16.3934
Epoch 172/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9427 - mae: 16.4310
Epoch 173/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9119 - mae: 16.4002
Epoch 174/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1226 - mae: 16.6110
Epoch 175/500
30/30 [==============================] - 0s 14ms/step - loss: 16.1785 - mae: 16.6673
Epoch 176/500
30/30 [==============================] - 0s 13ms/step - loss: 15.9484 - mae: 16.4367
Epoch 177/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9025 - mae: 16.3905
Epoch 178/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9317 - mae: 16.4202
Epoch 179/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9629 - mae: 16.4511
Epoch 180/500
30/30 [==============================] - 0s 14ms/step - loss: 15.9972 - mae: 16.4859
Epoch 181/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0321 - mae: 16.5207
Epoch 182/500
30/30 [==============================] - 0s 15ms/step - loss: 16.1572 - mae: 16.6460
Epoch 183/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8769 - mae: 16.3651
Epoch 184/500
30/30 [==============================] - 0s 15ms/step - loss: 15.8820 - mae: 16.3701
Epoch 185/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3207 - mae: 16.8093
Epoch 186/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8750 - mae: 16.3633
Epoch 187/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0028 - mae: 16.4915
Epoch 188/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0252 - mae: 16.5137
Epoch 189/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8437 - mae: 16.3319
Epoch 190/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8724 - mae: 16.3606
Epoch 191/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8171 - mae: 16.3053
Epoch 192/500
30/30 [==============================] - 0s 16ms/step - loss: 15.9633 - mae: 16.4516
Epoch 193/500
30/30 [==============================] - 1s 18ms/step - loss: 15.8101 - mae: 16.2980
Epoch 194/500
30/30 [==============================] - 1s 18ms/step - loss: 15.7552 - mae: 16.2428
Epoch 195/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7855 - mae: 16.2734
Epoch 196/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9667 - mae: 16.4550
Epoch 197/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7721 - mae: 16.2598
Epoch 198/500
30/30 [==============================] - 0s 16ms/step - loss: 15.7905 - mae: 16.2785
Epoch 199/500
30/30 [==============================] - 1s 17ms/step - loss: 15.7814 - mae: 16.2695
Epoch 200/500
30/30 [==============================] - 0s 16ms/step - loss: 15.8151 - mae: 16.3030
Epoch 201/500
30/30 [==============================] - 0s 15ms/step - loss: 16.0109 - mae: 16.4994
Epoch 202/500
30/30 [==============================] - 0s 13ms/step - loss: 16.2435 - mae: 16.7325
Epoch 203/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9296 - mae: 16.4180
Epoch 204/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7759 - mae: 16.2640
Epoch 205/500
30/30 [==============================] - 0s 15ms/step - loss: 15.8343 - mae: 16.3225
Epoch 206/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7869 - mae: 16.2749
Epoch 207/500
30/30 [==============================] - 0s 15ms/step - loss: 15.8904 - mae: 16.3786
Epoch 208/500
30/30 [==============================] - 0s 16ms/step - loss: 15.7712 - mae: 16.2591
Epoch 209/500
30/30 [==============================] - 1s 20ms/step - loss: 15.7325 - mae: 16.2202
Epoch 210/500
30/30 [==============================] - 0s 16ms/step - loss: 16.0256 - mae: 16.5142
Epoch 211/500
30/30 [==============================] - 0s 14ms/step - loss: 16.0629 - mae: 16.5517
Epoch 212/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7444 - mae: 16.2323
Epoch 213/500
30/30 [==============================] - 0s 14ms/step - loss: 15.8732 - mae: 16.3613
Epoch 214/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7050 - mae: 16.1929
Epoch 215/500
30/30 [==============================] - 0s 16ms/step - loss: 15.7031 - mae: 16.1909
Epoch 216/500
30/30 [==============================] - 1s 18ms/step - loss: 15.8182 - mae: 16.3062
Epoch 217/500
30/30 [==============================] - 0s 15ms/step - loss: 15.6561 - mae: 16.1438
Epoch 218/500
30/30 [==============================] - 0s 16ms/step - loss: 15.6673 - mae: 16.1550
Epoch 219/500
30/30 [==============================] - 1s 19ms/step - loss: 15.7449 - mae: 16.2332
Epoch 220/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7299 - mae: 16.2177
Epoch 221/500
30/30 [==============================] - 0s 16ms/step - loss: 15.8053 - mae: 16.2936
Epoch 222/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7894 - mae: 16.2776
Epoch 223/500
30/30 [==============================] - 0s 15ms/step - loss: 15.8301 - mae: 16.3182
Epoch 224/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7778 - mae: 16.2661
Epoch 225/500
30/30 [==============================] - 0s 15ms/step - loss: 15.6241 - mae: 16.1117
Epoch 226/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6527 - mae: 16.1405
Epoch 227/500
30/30 [==============================] - 1s 17ms/step - loss: 15.6845 - mae: 16.1722
Epoch 228/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7902 - mae: 16.2785
Epoch 229/500
30/30 [==============================] - 0s 15ms/step - loss: 15.8082 - mae: 16.2962
Epoch 230/500
30/30 [==============================] - 0s 15ms/step - loss: 15.6261 - mae: 16.1139
Epoch 231/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6192 - mae: 16.1068
Epoch 232/500
30/30 [==============================] - 0s 16ms/step - loss: 15.6034 - mae: 16.0912
Epoch 233/500
30/30 [==============================] - 0s 16ms/step - loss: 15.5755 - mae: 16.0633
Epoch 234/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7108 - mae: 16.1984
Epoch 235/500
30/30 [==============================] - 0s 15ms/step - loss: 15.6383 - mae: 16.1264
Epoch 236/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7013 - mae: 16.1889
Epoch 237/500
30/30 [==============================] - 0s 15ms/step - loss: 15.9201 - mae: 16.4087
Epoch 238/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6194 - mae: 16.1070
Epoch 239/500
30/30 [==============================] - 0s 16ms/step - loss: 16.1093 - mae: 16.5979
Epoch 240/500
30/30 [==============================] - 0s 15ms/step - loss: 16.0429 - mae: 16.5318
Epoch 241/500
30/30 [==============================] - 1s 17ms/step - loss: 15.5977 - mae: 16.0856
Epoch 242/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6842 - mae: 16.1722
Epoch 243/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6201 - mae: 16.1081
Epoch 244/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5879 - mae: 16.0757
Epoch 245/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6471 - mae: 16.1352
Epoch 246/500
30/30 [==============================] - 0s 13ms/step - loss: 15.5125 - mae: 15.9998
Epoch 247/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5122 - mae: 15.9999
Epoch 248/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6258 - mae: 16.1138
Epoch 249/500
30/30 [==============================] - 0s 14ms/step - loss: 16.3115 - mae: 16.8002
Epoch 250/500
30/30 [==============================] - 0s 14ms/step - loss: 15.6440 - mae: 16.1321
Epoch 251/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5283 - mae: 16.0154
Epoch 252/500
30/30 [==============================] - 0s 14ms/step - loss: 15.7157 - mae: 16.2039
Epoch 253/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5189 - mae: 16.0065
Epoch 254/500
30/30 [==============================] - 0s 16ms/step - loss: 15.5357 - mae: 16.0235
Epoch 255/500
30/30 [==============================] - 1s 17ms/step - loss: 15.6168 - mae: 16.1043
Epoch 256/500
30/30 [==============================] - 1s 17ms/step - loss: 15.5067 - mae: 15.9946
Epoch 257/500
30/30 [==============================] - 1s 17ms/step - loss: 15.4329 - mae: 15.9205
Epoch 258/500
30/30 [==============================] - 0s 15ms/step - loss: 15.4566 - mae: 15.9441
Epoch 259/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4590 - mae: 15.9463
Epoch 260/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4482 - mae: 15.9357
Epoch 261/500
30/30 [==============================] - 0s 13ms/step - loss: 15.4836 - mae: 15.9712
Epoch 262/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4226 - mae: 15.9103
Epoch 263/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5171 - mae: 16.0046
Epoch 264/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4175 - mae: 15.9046
Epoch 265/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4536 - mae: 15.9416
Epoch 266/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5049 - mae: 15.9927
Epoch 267/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4413 - mae: 15.9287
Epoch 268/500
30/30 [==============================] - 0s 16ms/step - loss: 15.4964 - mae: 15.9838
Epoch 269/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3675 - mae: 15.8547
Epoch 270/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4797 - mae: 15.9677
Epoch 271/500
30/30 [==============================] - 0s 16ms/step - loss: 15.4602 - mae: 15.9476
Epoch 272/500
30/30 [==============================] - 0s 15ms/step - loss: 15.3877 - mae: 15.8752
Epoch 273/500
30/30 [==============================] - 1s 18ms/step - loss: 15.3989 - mae: 15.8862
Epoch 274/500
30/30 [==============================] - 1s 17ms/step - loss: 15.3990 - mae: 15.8861
Epoch 275/500
30/30 [==============================] - 0s 15ms/step - loss: 15.3618 - mae: 15.8492
Epoch 276/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4279 - mae: 15.9153
Epoch 277/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3635 - mae: 15.8505
Epoch 278/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5433 - mae: 16.0306
Epoch 279/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3391 - mae: 15.8264
Epoch 280/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4045 - mae: 15.8917
Epoch 281/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3967 - mae: 15.8840
Epoch 282/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4836 - mae: 15.9712
Epoch 283/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3408 - mae: 15.8279
Epoch 284/500
30/30 [==============================] - 0s 15ms/step - loss: 15.3785 - mae: 15.8656
Epoch 285/500
30/30 [==============================] - 1s 17ms/step - loss: 15.3433 - mae: 15.8301
Epoch 286/500
30/30 [==============================] - 0s 15ms/step - loss: 15.5490 - mae: 16.0366
Epoch 287/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3053 - mae: 15.7924
Epoch 288/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3722 - mae: 15.8593
Epoch 289/500
30/30 [==============================] - 0s 15ms/step - loss: 15.2896 - mae: 15.7763
Epoch 290/500
30/30 [==============================] - 1s 17ms/step - loss: 15.3352 - mae: 15.8223
Epoch 291/500
30/30 [==============================] - 1s 17ms/step - loss: 15.4112 - mae: 15.8982
Epoch 292/500
30/30 [==============================] - 0s 16ms/step - loss: 15.2988 - mae: 15.7858
Epoch 293/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3388 - mae: 15.8259
Epoch 294/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3062 - mae: 15.7929
Epoch 295/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4105 - mae: 15.8977
Epoch 296/500
30/30 [==============================] - 0s 16ms/step - loss: 15.2703 - mae: 15.7570
Epoch 297/500
30/30 [==============================] - 1s 17ms/step - loss: 15.4421 - mae: 15.9292
Epoch 298/500
30/30 [==============================] - 1s 17ms/step - loss: 15.9984 - mae: 16.4868
Epoch 299/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3209 - mae: 15.8076
Epoch 300/500
30/30 [==============================] - 1s 18ms/step - loss: 15.2969 - mae: 15.7837
Epoch 301/500
30/30 [==============================] - 0s 15ms/step - loss: 15.3053 - mae: 15.7922
Epoch 302/500
30/30 [==============================] - 0s 17ms/step - loss: 15.3504 - mae: 15.8375
Epoch 303/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2900 - mae: 15.7768
Epoch 304/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3542 - mae: 15.8414
Epoch 305/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1981 - mae: 15.6845
Epoch 306/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2415 - mae: 15.7282
Epoch 307/500
30/30 [==============================] - 0s 14ms/step - loss: 15.4262 - mae: 15.9137
Epoch 308/500
30/30 [==============================] - 0s 15ms/step - loss: 15.2325 - mae: 15.7189
Epoch 309/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5058 - mae: 15.9931
Epoch 310/500
30/30 [==============================] - 1s 18ms/step - loss: 15.3972 - mae: 15.8843
Epoch 311/500
30/30 [==============================] - 0s 15ms/step - loss: 15.3948 - mae: 15.8822
Epoch 312/500
30/30 [==============================] - 1s 17ms/step - loss: 15.3015 - mae: 15.7884
Epoch 313/500
30/30 [==============================] - 0s 15ms/step - loss: 15.3304 - mae: 15.8171
Epoch 314/500
30/30 [==============================] - 0s 15ms/step - loss: 15.2263 - mae: 15.7129
Epoch 315/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1832 - mae: 15.6693
Epoch 316/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1867 - mae: 15.6732
Epoch 317/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1514 - mae: 15.6378
Epoch 318/500
30/30 [==============================] - 0s 16ms/step - loss: 15.3113 - mae: 15.7983
Epoch 319/500
30/30 [==============================] - 1s 17ms/step - loss: 15.6725 - mae: 16.1602
Epoch 320/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1930 - mae: 15.6793
Epoch 321/500
30/30 [==============================] - 0s 15ms/step - loss: 15.1704 - mae: 15.6564
Epoch 322/500
30/30 [==============================] - 0s 15ms/step - loss: 15.5024 - mae: 15.9902
Epoch 323/500
30/30 [==============================] - 0s 15ms/step - loss: 15.2420 - mae: 15.7288
Epoch 324/500
30/30 [==============================] - 0s 13ms/step - loss: 15.1451 - mae: 15.6314
Epoch 325/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3194 - mae: 15.8064
Epoch 326/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1986 - mae: 15.6848
Epoch 327/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1682 - mae: 15.6546
Epoch 328/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1894 - mae: 15.6759
Epoch 329/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2311 - mae: 15.7175
Epoch 330/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2767 - mae: 15.7634
Epoch 331/500
30/30 [==============================] - 0s 13ms/step - loss: 15.1838 - mae: 15.6702
Epoch 332/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3262 - mae: 15.8128
Epoch 333/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1611 - mae: 15.6471
Epoch 334/500
30/30 [==============================] - 0s 16ms/step - loss: 15.1194 - mae: 15.6057
Epoch 335/500
30/30 [==============================] - 1s 18ms/step - loss: 15.1417 - mae: 15.6280
Epoch 336/500
30/30 [==============================] - 1s 17ms/step - loss: 15.1291 - mae: 15.6155
Epoch 337/500
30/30 [==============================] - 1s 18ms/step - loss: 15.1139 - mae: 15.6003
Epoch 338/500
30/30 [==============================] - 1s 18ms/step - loss: 15.1558 - mae: 15.6418
Epoch 339/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0973 - mae: 15.5834
Epoch 340/500
30/30 [==============================] - 0s 16ms/step - loss: 15.0798 - mae: 15.5663
Epoch 341/500
30/30 [==============================] - 1s 18ms/step - loss: 15.1344 - mae: 15.6208
Epoch 342/500
30/30 [==============================] - 0s 16ms/step - loss: 15.0556 - mae: 15.5419
Epoch 343/500
30/30 [==============================] - 1s 17ms/step - loss: 15.1649 - mae: 15.6512
Epoch 344/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3677 - mae: 15.8548
Epoch 345/500
30/30 [==============================] - 0s 15ms/step - loss: 15.4797 - mae: 15.9666
Epoch 346/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0599 - mae: 15.5458
Epoch 347/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1366 - mae: 15.6227
Epoch 348/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2901 - mae: 15.7771
Epoch 349/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0421 - mae: 15.5281
Epoch 350/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0406 - mae: 15.5271
Epoch 351/500
30/30 [==============================] - 0s 13ms/step - loss: 15.0782 - mae: 15.5643
Epoch 352/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0080 - mae: 15.4939
Epoch 353/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0709 - mae: 15.5567
Epoch 354/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0508 - mae: 15.5368
Epoch 355/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0239 - mae: 15.5098
Epoch 356/500
30/30 [==============================] - 0s 15ms/step - loss: 14.9594 - mae: 15.4451
Epoch 357/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0580 - mae: 15.5441
Epoch 358/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2814 - mae: 15.7687
Epoch 359/500
30/30 [==============================] - 0s 13ms/step - loss: 15.0490 - mae: 15.5351
Epoch 360/500
30/30 [==============================] - 0s 15ms/step - loss: 15.0498 - mae: 15.5365
Epoch 361/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0915 - mae: 15.5779
Epoch 362/500
30/30 [==============================] - 0s 15ms/step - loss: 15.2306 - mae: 15.7175
Epoch 363/500
30/30 [==============================] - 0s 14ms/step - loss: 15.3104 - mae: 15.7972
Epoch 364/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0009 - mae: 15.4870
Epoch 365/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9399 - mae: 15.4251
Epoch 366/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9447 - mae: 15.4307
Epoch 367/500
30/30 [==============================] - 0s 16ms/step - loss: 15.1911 - mae: 15.6779
Epoch 368/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0051 - mae: 15.4914
Epoch 369/500
30/30 [==============================] - 0s 15ms/step - loss: 15.0552 - mae: 15.5416
Epoch 370/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0436 - mae: 15.5295
Epoch 371/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0175 - mae: 15.5037
Epoch 372/500
30/30 [==============================] - 0s 15ms/step - loss: 14.9911 - mae: 15.4772
Epoch 373/500
30/30 [==============================] - 0s 15ms/step - loss: 14.9347 - mae: 15.4203
Epoch 374/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0221 - mae: 15.5081
Epoch 375/500
30/30 [==============================] - 1s 18ms/step - loss: 14.9755 - mae: 15.4615
Epoch 376/500
30/30 [==============================] - 1s 17ms/step - loss: 14.9219 - mae: 15.4074
Epoch 377/500
30/30 [==============================] - 1s 17ms/step - loss: 14.9700 - mae: 15.4562
Epoch 378/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1166 - mae: 15.6031
Epoch 379/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1503 - mae: 15.6369
Epoch 380/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8959 - mae: 15.3815
Epoch 381/500
30/30 [==============================] - 0s 15ms/step - loss: 14.9333 - mae: 15.4189
Epoch 382/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2071 - mae: 15.6942
Epoch 383/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8798 - mae: 15.3658
Epoch 384/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9031 - mae: 15.3885
Epoch 385/500
30/30 [==============================] - 1s 18ms/step - loss: 14.9718 - mae: 15.4579
Epoch 386/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0478 - mae: 15.5342
Epoch 387/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9848 - mae: 15.4712
Epoch 388/500
30/30 [==============================] - 0s 15ms/step - loss: 14.9270 - mae: 15.4128
Epoch 389/500
30/30 [==============================] - 0s 17ms/step - loss: 14.8695 - mae: 15.3551
Epoch 390/500
30/30 [==============================] - 1s 18ms/step - loss: 15.4171 - mae: 15.9042
Epoch 391/500
30/30 [==============================] - 0s 15ms/step - loss: 15.0925 - mae: 15.5791
Epoch 392/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9192 - mae: 15.4048
Epoch 393/500
30/30 [==============================] - 0s 14ms/step - loss: 15.5875 - mae: 16.0752
Epoch 394/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1156 - mae: 15.6018
Epoch 395/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8878 - mae: 15.3734
Epoch 396/500
30/30 [==============================] - 0s 14ms/step - loss: 15.1636 - mae: 15.6498
Epoch 397/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8613 - mae: 15.3466
Epoch 398/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0361 - mae: 15.5222
Epoch 399/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8893 - mae: 15.3750
Epoch 400/500
30/30 [==============================] - 0s 15ms/step - loss: 14.8472 - mae: 15.3328
Epoch 401/500
30/30 [==============================] - 0s 13ms/step - loss: 15.6436 - mae: 16.1307
Epoch 402/500
30/30 [==============================] - 0s 16ms/step - loss: 15.9384 - mae: 16.4261
Epoch 403/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9776 - mae: 15.4637
Epoch 404/500
30/30 [==============================] - 0s 14ms/step - loss: 15.2612 - mae: 15.7481
Epoch 405/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8092 - mae: 15.2946
Epoch 406/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8157 - mae: 15.3010
Epoch 407/500
30/30 [==============================] - 0s 15ms/step - loss: 14.8365 - mae: 15.3220
Epoch 408/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7986 - mae: 15.2840
Epoch 409/500
30/30 [==============================] - 0s 15ms/step - loss: 14.7763 - mae: 15.2610
Epoch 410/500
30/30 [==============================] - 0s 15ms/step - loss: 14.8700 - mae: 15.3556
Epoch 411/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0433 - mae: 15.5297
Epoch 412/500
30/30 [==============================] - 1s 17ms/step - loss: 14.8291 - mae: 15.3144
Epoch 413/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7543 - mae: 15.2395
Epoch 414/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8680 - mae: 15.3535
Epoch 415/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9279 - mae: 15.4138
Epoch 416/500
30/30 [==============================] - 0s 15ms/step - loss: 15.0915 - mae: 15.5782
Epoch 417/500
30/30 [==============================] - 0s 15ms/step - loss: 14.8199 - mae: 15.3061
Epoch 418/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8473 - mae: 15.3334
Epoch 419/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7691 - mae: 15.2549
Epoch 420/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8012 - mae: 15.2871
Epoch 421/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8548 - mae: 15.3404
Epoch 422/500
30/30 [==============================] - 0s 15ms/step - loss: 14.8743 - mae: 15.3599
Epoch 423/500
30/30 [==============================] - 0s 14ms/step - loss: 15.0132 - mae: 15.4996
Epoch 424/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7946 - mae: 15.2807
Epoch 425/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6989 - mae: 15.1838
Epoch 426/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7783 - mae: 15.2639
Epoch 427/500
30/30 [==============================] - 0s 16ms/step - loss: 14.8919 - mae: 15.3780
Epoch 428/500
30/30 [==============================] - 1s 18ms/step - loss: 14.9089 - mae: 15.3947
Epoch 429/500
30/30 [==============================] - 1s 18ms/step - loss: 14.8476 - mae: 15.3332
Epoch 430/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7627 - mae: 15.2484
Epoch 431/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8583 - mae: 15.3440
Epoch 432/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7538 - mae: 15.2391
Epoch 433/500
30/30 [==============================] - 0s 15ms/step - loss: 14.7444 - mae: 15.2301
Epoch 434/500
30/30 [==============================] - 0s 15ms/step - loss: 14.7706 - mae: 15.2559
Epoch 435/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9036 - mae: 15.3899
Epoch 436/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6807 - mae: 15.1661
Epoch 437/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9748 - mae: 15.4613
Epoch 438/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8981 - mae: 15.3843
Epoch 439/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7594 - mae: 15.2446
Epoch 440/500
30/30 [==============================] - 0s 15ms/step - loss: 14.7507 - mae: 15.2364
Epoch 441/500
30/30 [==============================] - 0s 16ms/step - loss: 14.7284 - mae: 15.2135
Epoch 442/500
30/30 [==============================] - 0s 17ms/step - loss: 14.7428 - mae: 15.2281
Epoch 443/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8573 - mae: 15.3436
Epoch 444/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8124 - mae: 15.2985
Epoch 445/500
30/30 [==============================] - 0s 15ms/step - loss: 14.8117 - mae: 15.2975
Epoch 446/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8139 - mae: 15.3003
Epoch 447/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7197 - mae: 15.2053
Epoch 448/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6914 - mae: 15.1769
Epoch 449/500
30/30 [==============================] - 0s 15ms/step - loss: 14.9118 - mae: 15.3977
Epoch 450/500
30/30 [==============================] - 0s 14ms/step - loss: 14.9488 - mae: 15.4352
Epoch 451/500
30/30 [==============================] - 0s 15ms/step - loss: 14.7782 - mae: 15.2642
Epoch 452/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7453 - mae: 15.2312
Epoch 453/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7248 - mae: 15.2105
Epoch 454/500
30/30 [==============================] - 1s 17ms/step - loss: 14.6106 - mae: 15.0958
Epoch 455/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6153 - mae: 15.1010
Epoch 456/500
30/30 [==============================] - 0s 14ms/step - loss: 14.7214 - mae: 15.2072
Epoch 457/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6813 - mae: 15.1670
Epoch 458/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6108 - mae: 15.0960
Epoch 459/500
30/30 [==============================] - 0s 16ms/step - loss: 14.6650 - mae: 15.1502
Epoch 460/500
30/30 [==============================] - 0s 15ms/step - loss: 14.5851 - mae: 15.0707
Epoch 461/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5661 - mae: 15.0515
Epoch 462/500
30/30 [==============================] - 0s 16ms/step - loss: 14.5763 - mae: 15.0615
Epoch 463/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5853 - mae: 15.0706
Epoch 464/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6161 - mae: 15.1017
Epoch 465/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5613 - mae: 15.0463
Epoch 466/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6468 - mae: 15.1325
Epoch 467/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5848 - mae: 15.0699
Epoch 468/500
30/30 [==============================] - 1s 18ms/step - loss: 14.6184 - mae: 15.1037
Epoch 469/500
30/30 [==============================] - 0s 15ms/step - loss: 14.5933 - mae: 15.0786
Epoch 470/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8568 - mae: 15.3430
Epoch 471/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6584 - mae: 15.1439
Epoch 472/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8504 - mae: 15.3366
Epoch 473/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6431 - mae: 15.1293
Epoch 474/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5289 - mae: 15.0141
Epoch 475/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5658 - mae: 15.0509
Epoch 476/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5842 - mae: 15.0696
Epoch 477/500
30/30 [==============================] - 0s 15ms/step - loss: 14.6515 - mae: 15.1372
Epoch 478/500
30/30 [==============================] - 0s 15ms/step - loss: 14.6158 - mae: 15.1013
Epoch 479/500
30/30 [==============================] - 0s 17ms/step - loss: 14.5865 - mae: 15.0718
Epoch 480/500
30/30 [==============================] - 0s 15ms/step - loss: 14.5492 - mae: 15.0345
Epoch 481/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5075 - mae: 14.9931
Epoch 482/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5184 - mae: 15.0038
Epoch 483/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5044 - mae: 14.9896
Epoch 484/500
30/30 [==============================] - 0s 14ms/step - loss: 14.4902 - mae: 14.9754
Epoch 485/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5195 - mae: 15.0049
Epoch 486/500
30/30 [==============================] - 0s 14ms/step - loss: 14.8027 - mae: 15.2887
Epoch 487/500
30/30 [==============================] - 0s 15ms/step - loss: 15.7255 - mae: 16.2135
Epoch 488/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5453 - mae: 15.0308
Epoch 489/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5053 - mae: 14.9908
Epoch 490/500
30/30 [==============================] - 0s 15ms/step - loss: 14.5601 - mae: 15.0457
Epoch 491/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5002 - mae: 14.9853
Epoch 492/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5193 - mae: 15.0045
Epoch 493/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5330 - mae: 15.0182
Epoch 494/500
30/30 [==============================] - 0s 14ms/step - loss: 14.4550 - mae: 14.9402
Epoch 495/500
30/30 [==============================] - 1s 17ms/step - loss: 14.5057 - mae: 14.9907
Epoch 496/500
30/30 [==============================] - 0s 15ms/step - loss: 14.4685 - mae: 14.9537
Epoch 497/500
30/30 [==============================] - 0s 14ms/step - loss: 14.5498 - mae: 15.0353
Epoch 498/500
30/30 [==============================] - 0s 14ms/step - loss: 14.6195 - mae: 15.1050
Epoch 499/500
30/30 [==============================] - 0s 15ms/step - loss: 14.5915 - mae: 15.0775
Epoch 500/500
30/30 [==============================] - 0s 15ms/step - loss: 14.5214 - mae: 15.0068
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
rnn_forecast = model_forecast(model, series[..., np.newaxis], window_size)
rnn_forecast = rnn_forecast[split_time - window_size:-1, -1, 0]

plt.figure(figsize=(10, 6))
plot_series(time_valid, x_valid)
plot_series(time_valid, rnn_forecast)
tf.keras.metrics.mean_absolute_error(x_valid, rnn_forecast).numpy()
14.773848
import matplotlib.image  as mpimg
import matplotlib.pyplot as plt

#-----------------------------------------------------------
# Retrieve a list of list results on training and test data
# sets for each training epoch
#-----------------------------------------------------------
loss=history.history['loss']

epochs=range(len(loss)) # Get number of epochs


#------------------------------------------------
# Plot training and validation loss per epoch
#------------------------------------------------
plt.plot(epochs, loss, 'r')
plt.title('Training loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(["Loss"])

plt.figure()



zoomed_loss = loss[200:]
zoomed_epochs = range(200,500)


#------------------------------------------------
# Plot training and validation loss per epoch
#------------------------------------------------
plt.plot(zoomed_epochs, zoomed_loss, 'r')
plt.title('Training loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(["Loss"])

plt.figure()
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>